Обзор основных типов привода крыльчатки системы охлаждения дорожных машин (Часть 1)

А. Платонов, фото «ДСТ-Урал»

В настоящий момент основным способом экономии топлива является применение на машинах системы регулирования частоты вращения вентилятора системы охлаждения посредством гидропривода, так называемой системы Fan Drive.

На примере силовой установки ЯМЗ-652 расчетным путем, теоретически, а потом и практически доказана эффективность использования бесступенчатого регулирования частоты вращения вентилятора системы охлаждения с помощью системы Fan Drive. Наибольший эффект от регулирования достигается в диапазоне малых и средних нагрузок работы двигателя на исследуемых режимах.

Система охлаждения служит для охлаждения и поддержания на приемлемом уровне заданного теплового режима работы двигателя или любой другой системы, в которой генерируется энергия в виде тепла. Различают воздушную и жидкостную системы охлаждения. В воздушной системе охлаждения отвод тепла от двигателя или генератора тепла осуществляется посредством его обдува воздухом, через развитую оребренную поверхность. В жидкостной системе охлаждения отвод тепла реализован через радиатор (рекуперативный теплообменник) и нагретые внешние поверхности двигателя. Эффективный отвод тепла от двигателя в условиях автомобиля хорошо реализуется набегающим потоком воздуха при движении по трассе. В условиях малых скоростей городской цикл движения, поддержание теплового состояния двигателя без вентилятора реализовать практически невозможно. Строительная и дорожная техника, особенно гусеничная, лишена возможности поддерживать тепловое состояние двигателя и его систем посредством набегающего потока воздуха при движении. Единственно возможный вариант – принудительное охлаждение, создаваемое вентилятором.

Двигатели Д180 и ЯМЗ-236, -238 с механическим приводом крыльчатки

Вентилятор входит в состав любой системы охлаждения и выполняет функцию принудительного обдува и/ или проталкивания (протягивания) условно холодного теплоносителя через теплообменник и двигатель. Привод вентилятора может быть реализован по следующим схемам: зубчатая, клиноременная, фрикционная, электромагнитная, электрическая, гидромеханическая и гидравлическая. Рассмотрим некоторые из систем в отдельности.

Зубчатая передача – одна из наиболее простых схем привода, вращение вентилятора осуществляется от коленчатого вала напрямую либо через клиноременную передачу. Крыльчатка вентилятора, как правило, крепится на шкив водяного насоса. К достоинствам можно отнести простоту и надежность конструкции, к недостаткам будем относить дополнительный шум от постоянного вращения лопастей, большие затраты энергии на привод вентилятора.

Вращение лопастей вентилятора совершается независимо от теплового состояния двигателя и прямо пропорционально оборотам ДВС. Также на приводе невозможно организовать реверс потока воздуха (например, выдув наружу) без замены крыльчатки на выдувную. Установка более мощных и производительных крыльчаток приводит к постепенному разрушению резиновой муфты-демпфера, и при остановке двигателя инерционная сила движения крыльчатки может срезать приводной вал.

Клиноременная передача является аналогом зубчатой, но проскальзывание ремней при остановке двигателя защищает привод вентилятора от резкого торможения и разрушения. К минусам можно отнести необходимость обслуживания и замены приводных ремней вентилятора.

Клиноременной привод
При остановке двигателя инерционная сила движения крыльчатки может срезать приводной вал

Гидромеханический привод реализуется посредством гидромуфты, которая передает крутящий момент от ведущего колеса к ведомому колесу и гасит инерционные нагрузки, возникающие при резком изменении частоты вращения коленчатого вала двигателя. Передача крутящего момента с ведущего колеса на ведомое происходит за счет вязкостного трения при заполнении рабочей полости маслом или специальной жидкостью. Частота вращения ведомого колеса гидромуфты зависит от частоты вращения ведущего колеса и от количества масла, поступившего в рабочую полость камеры гидромуфты.

К достоинствам такого типа муфт будем относить возможность автоматического поддержания заданного теплового режима, минимизацию динамических нагрузок на привод. К недостатку отнесем наличие жесткой связи оборотов вентилятора с оборотами коленчатого вала, исключающей возможность эффективного охлаждения двигателя при минимальном скоростном режиме работы двигателя. Отсутствует возможность размещения вентилятора системы охлаждения вне двигателя. Чтобы вискомуфта эффективно срабатывала, необходимо задувать теплый воздух внутрь подкапотного пространства. Это хорошо для магистрального быстроходного транспорта, но хуже для тяжелого машиностроения, так как пыльный, жаркий воздух дует внутрь, в сторону кабины, ухудшая комфорт оператора и работу ДВС. Установка выдувной крыльчатки с таким типом привода невозможна.

Электромагнитная муфта привода вентилятора автоматически поддерживает оптимальный температурный диапазон двигателя путем передачи необходимого вращения вентилятору системы охлаждения. Такой тип муфт применяется на двигателях марки ЗМЗ, КАМАЗ, ЯМЗ. Муфта, как правило, установлена на одном валу с водяным насосом и приводится в движение ременным или зубчатым приводом. Муфта состоит из электромагнита, который установлен на ступице вентилятора. Ступица соединена пластинчатой пружиной с якорем, который свободно вращается вместе с ней на подшипнике.

Вискомуфта или гидромеханический привод ДВС ЯМЗ-536

Как только срабатывает один из датчиков температуры по нагреву (охлаждающей жидкости, масла или температуры воздуха в ОНВ), в катушку поступает электрический ток, под действием которого она притягивает к себе якорь, и ступица вместе с вентилятором начинает вращаться. Как только сигнал с датчиков пропадает, ступица размыкается, вентилятор перестает вращаться. Резюмируя, вентилятор вступает в работу, когда необходимо регулировать тепловой режим работы двигателя. Данная схема работает по принципу «вкл./ выкл.», т. е. отсутствует плавное регулирование оборотов вращения вентилятора.

Помимо этого, к недостаткам данной системы можно отнести повышенные динамические нагрузки, возникающие в момент включения вентилятора, а также жесткая связь оборотов вентилятора с оборотами коленчатого вала, исключающая возможность быстрого охлаждения двигателя и его систем при малых частотах вращения коленчатого вала.

Однако данный вид привода нивелирует отрицательные стороны клиноременной передачи, вращая крыльчатку только при необходимости. В отличии от вискомуфты становится возможным применение выдувных крыльчаток, а также независимое включение вентилятора от показаний датчиков температуры разных систем, нуждающихся в охлаждении, таких как гидросистема, трансмиссия, система охлаждения ДВС или ОНВ.

В электрической схеме привода, как правило, используется электродвигатель постоянного тока на 12/24, 220 или 380 В, работой которого управляет электрическая система машины. К достоинствам можно отнести относительную компактность при невысокой мощности вентилятора; простоту размещения, обусловленную отсутствием кинематической связи с двигателем; возможность ступенчатого и плавного регулирования частоты вращения вентилятора.

К недостатку можно отнести нецелесообразность применения электродвигателей вентиляторов высокой мощности более 15 кВт на дорожно-строительной технике массой до 100 т. Это объясняется тем, что масса и размеры самого электродвигателя получаются очень внушительными, и мощный электродвигатель создает повышенные нагрузки на электрооборудование машины, так как на максимальной скорости его потребление электричества превышает выработку генератора. Поэтому данный вид привода в рамках дальнейшего анализа рассмотрен не будет.

Подводя итоги анализа механизмов привода вентилятора, можно сделать следующие выводы. Механический (зубчатый или ременный), электромагнитный и гидромеханический приводы можно использовать в том случае, когда радиатор системы охлаждения расположен одновременно в непосредственной близости плоскости вращения лопастей вентилятора. Механический привод не энергоэффективен, время прогрева двигателя до рабочей температуры в холодное время года может занимать продолжительное время (до часа). Электромагнитная и гидромеханическая муфты работают по принципу «вкл. /выкл.», частота вращения не является регулируемым параметром.

В гидромеханическом приводе при старте за счет проскальзывания ведомого колеса относительно ведущего минимизируют возникающие динамические нагрузки при старте вентилятора. Электровентилятор дает свободу выбора в плане размещения относительно двигателя как его самого, так и радиатора. Возможно регулирование частоты вращения вне зависимости от скоростного режима работы двигателя. Ограниченное использование при высоких затратах мощности на привод.

Наличие недостатков в механизмах привода вентилятора делает необходимым применение такого привода, который позволял бы максимально эффективно поддерживать тепловой режим двигателя при минимальных затратах энергии на его работу. И одним из таких приводов может выступать гидравлический мотор. Об этом мы поговорим в следующем номере журнала.